
RPMSpecsEditor Users Guide

Copyright © 2025 by Select Calibration Inc. All rights reserved.

RPMSpecsEditor Users Guide

Table of Contents
Introduction...3
Overview...3
SPEC File...4
Variables..4

Requires Variable Entry...6
Variable Editor...6
Description..7

Expressions..7
Libraries...9

Target Library Directories..10
Source Libraries...10
Source Library Versions...11

Requires...11
Change Log..12
Options..13
RPM Creation Example...14

RPMBuild Directory Setup..15
Source Files...15
SPEC File..15
Desktop Menu Items...15
Shared Files..16
Build RPM..16
RPM Signing..16

Troubleshooting...17
Example Application Launch Problem..17
Finding Missing Libraries...17
Installing Missing Libraries...18

Revision History..19

Select Calibration Inc. October 2, 2025 Page 2 of 19

RPMSpecsEditor Users Guide

Introduction
The RPMSpecsEditor utility allows the user to create a SPEC file that is read by the RPMBuild utility
in order to create an RPM file. An RPM file is a package format used by the RPM Package Manager,
primarily for installing software on GNU/Linux distributions such as Red Hat, Fedora, SUSE Linux,
and CentOS. The RPMSpecsEditor is geared toward Qt applications containing various libraries
and plugins but should be adaptable to other frameworks if needed.

Overview
The RPMSpecsEditor utility consists of a main window with tabs for variables, expressions,
libraries, dependency requirements, change log, and options.

Illustration 1: RPMSpecs utility main window.

Select Calibration Inc. October 2, 2025 Page 3 of 19

RPMSpecsEditor Users Guide

SPEC File
The SPEC file is used by the RPMBuild utility in order to create an RPM file. The SPEC file has
uniquely identified sections that are used in the build process.

Table 1: RPM SPEC file partial list of sections:

Variable Description

%description Description of the program.

%prep Steps necessary to prepare the software for building.

%build Commands to build the software.

%install Commands to install the software.

%post Commands to be executed following the installation of the software.

%postun Commands to be executed following the removal of the software.

%files List of files that will be included in the package.

%changelog Record of changes made for each release.

Variables
The SPEC file can contain variables that can be used for various purposes. For example, the
variable %{buildroot} is defined as %{_topdir}/%{name}-%{version}-root and is easier and
cleaner to write as opposed to the expanded version.

Examples of variables written at the beginning of a SPECs file:

%define _topdir %{getenv:HOME}/rpmbuild
%define name program_name
%define release 1
%define version 1.0
%define buildroot %{_topdir}/%{name}-%{version}-root
Name: %{name}
Version: %{version}
Release: %{release}
Source: %{name}-%{version}.tar.gz
Summary: summary of the program function
License: GPLv3+
Group: Applications
URL: http://www.website.ca
Requires: glibc >= 2.31
Requires: libz1
Requires: fontconfig
Requires: libfreetype6
Requires: libglvnd
Requires: libXext6
Requires: libX11-6
Requires: libexpat1
Requires: libbz2-1

Select Calibration Inc. October 2, 2025 Page 4 of 19

RPMSpecsEditor Users Guide

Requires: libpng16-16
Requires: libxcb1
Requires: libXau6
Requires: libdrm2
Requires: libX11-xcb1
Requires: libxcb-icccm4
Requires: libxcb-image0
Requires: libxcb-shm0
Requires: libxcb-util1
Requires: libxcb-keysyms1
Requires: libxcb-randr0
Requires: libxcb-render-util0
Requires: libxcb-render0
Requires: libxcb-shape0
Requires: libxcb-sync1
Requires: libxcb-xfixes0
Requires: libxcb-xinerama0
Requires: libxcb-xkb1
Requires: libxcb-xinput0
Requires: libSM6
Requires: libICE6
Requires: libxkbcommon-x11-0
Requires: libxkbcommon0
Requires: libuuid1
Requires: libxcb-glx0

Variables are added to the SPEC file in the same order listed in the RPMSpecsEditor variables
section. The order is important as variables must be defined before they can be used.

Some variables, such as %{_topdir}, have special meaning for the RPMBuild utility. Commonly
used RPM macro variables are shown in the following tables.

Table 2: RPMBuild utility macro variables:

macro Definition Comment

%{buildroot} %{_buildrootdir}/%{name}-%{version}-%{release}.%
{_arch}

same as
$BUILDROOT

%{_topdir} %{getenv:HOME}/rpmbuild

%{_builddir} %{_topdir}/BUILD

%{_rpmdir} %{_topdir}/RPMS

%{_sourcedir} %{_topdir}/SOURCES

%{_specdir} %{_topdir}/SPECS

%{_srcrpmdir} %{_topdir}/SRPMS

%{_buildrootdir} %{_topdir}/BUILDROOT

Table 3: General macro variables:

macro Definition Comment
%{_sysconfdir} /etc

Select Calibration Inc. October 2, 2025 Page 5 of 19

RPMSpecsEditor Users Guide

macro Definition Comment
%{_prefix} /usr can be defined to /app for flatpak builds
%{_exec_prefix} %{_prefix} default: /usr
%{_includedir} %{_prefix}/include default: /usr/include
%{_bindir} %{_exec_prefix}/bin default: /usr/bin
%{_libdir} %{_exec_prefix}/%{_lib} default: /usr/%{_lib}
%{_libexecdir} %{_exec_prefix}/libexec default: /usr/libexec
%{_datadir} %{_datarootdir} default: /usr/share
%{_infodir} %{_datarootdir}/info default: /usr/share/info
%{_mandir} %{_datarootdir}/man default: /usr/share/man
%{_docdir} %{_datadir}/doc default: /usr/share/doc
%{_rundir} /run

%{_localstatedir} /var

%{_sharedstatedir} /var/lib

%{_lib} lib64 lib on 32bit platforms

Requires Variable Entry

The Requires entries describe what is needed on the target system to run the application. The
default list of variables include an entry for the glibc version which must be equal to or greater
than some value so an RPM is created on a system that has a current glibc version greater than
that of the target system it will not run. The Require entries ensures that the minimum
requirements for the application are met and will deal with this during installation instead of
simply not working.

With respect to glibc the following command can be run to determine what is currently installed:

ron@linux-4o1p:~> ldd --version
ldd (GNU libc) 2.31
Copyright (C) 2020 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
Written by Roland McGrath and Ulrich Drepper.

Additional Requires variable entries can be automatically added to the specs file based on a scan
of the selected plugin and libraries folder. This is done by default but can be disabled if necessary.

Variable Editor

Variables can be manipulated a variety of way. In addition to adding or removing entries the
order can be changed using the UP/DOWN buttons. Variable entries can also be archived and
restored as base settings.

Icon Description

Store current variable entries and values.

Select Calibration Inc. October 2, 2025 Page 6 of 19

RPMSpecsEditor Users Guide

Restore the current variables and entries from previously saved values.

Move the selected entry up.

Move the selected entry down.

Add a new variable entry.

Remove a selected variable entry.

Description

The description section describes the purpose of the program and any other relevant information.
The description can be quite lengthy if needed.

Expressions
The Expression section contains entries that are used in various sections of the SPEC file. For
example, the entry Build Root Path has a default value of %{buildroot}%{_libdir}/%{name} and
is used to define the location of the application image prior to installation.

Select Calibration Inc. October 2, 2025 Page 7 of 19

RPMSpecsEditor Users Guide

The Expression entries have the following roles:

Table 4: Expression Entries:

Name Description

Build Root Path Location where the software image is created.

CMake Bin Path Location of the compiled executable when processed using CMake.

QMake Bin Path Location of the compiled executable when processed using QMake.

Libraries Path Location of libraries and plugins used by the software.

Desktop Menu Path Location of the files necessary for the desktop menu (*.desktop,
*.png).

Target Install Path Target location of the software when installed.

Target Desktop Menu Path Target location of the menu entries when installed.

Select Calibration Inc. October 2, 2025 Page 8 of 19

RPMSpecsEditor Users Guide

The following is an example of where the Build Root Path entry is used in the generated SPEC file:
...
%build

qmake PREFIX=%{buildroot}%{_libdir}/%{name}
make

%install

mkdir -p %{buildroot}%{_libdir}/%{name}
mkdir -p %{buildroot}%{_libdir}/%{name}/platforms
mkdir -p %{buildroot}%{_libdir}/%{name}/lib
mkdir -p %{buildroot}%{_libdir}/%{name}/xcbglintegrations
mkdir -p %{buildroot}%{_datadir}/applications
mkdir -p %{buildroot}%{_datadir}/pixmaps

make install

patchelf --set-rpath '$ORIGIN/lib' %{buildroot}%{_libdir}/%{name}/%{name}
...

Libraries
The Libraries section allows selection of folders and specific library files to be included with the
software. The folders can be used for Qt plugins or for dynamically linked library files.

Select Calibration Inc. October 2, 2025 Page 9 of 19

RPMSpecsEditor Users Guide

Illustration 2: Target and source libraries.

Target Library Directories

The target library directories represents the name of the directory that will be included in the RPM
installation. In the example shown in illustration 2 the directories platforms, lib, and
xcbglintegrations will be installed as sub directories of the installed software.

Source Libraries

The source libraries list the individual files that will be copied to the associated target directory of
the generated RPM file. For plugin files a version number is not part of the file name where
dynamic libraries is expected to have the full version numbers as part of the name.

The Library entries can be manipulated with the following functions:

Table 5: Library Functions:

Icon Description

Select Calibration Inc. October 2, 2025 Page 10 of 19

RPMSpecsEditor Users Guide

Add target directory or library.

Remove target directory or library.

Modify name of library. For multiple library selections the version numbers can be changed
without having to modify each entry individually. See section Source Library Versions for
details.

Source Library Versions

The source dynamic libraries are expected to have three version values in the format of
lib<some_name>.so.1.2.3. In the event that the Qt version has changed all library files can be
updated to a specific version by selecting all libraries and change the version numbers to match
what is needed.

Requires
The Requires section contains details of the packages that would need to be installed on the target
system to provide the required libraries used by the application. This option scans the shared
libraries folder, including plugin libraries, as opposed to just the executable which is done
automatically when the rpm file is created.

Installing the RPM file directly should identify and automatically install all required libraries
defined in the RPM file. The debian version created by SCI uses the Alien utility to covert the
RPM to a DEB package which does not transfer information related to required libraries so manual
installation of additional packages may be necessary.

Select Calibration Inc. October 2, 2025 Page 11 of 19

RPMSpecsEditor Users Guide

Illustration 3: Requires section.

Table 6: Requires Functions:

Icon Description

Update libraries and packages from the shared_libs path defined in Options section.

Clear all listed libraries and packages.

Change Log
The Change Log section contains details of the revision history for the program. Each entry
consist of two parts where the first is the date and author name followed by one or more changes.
The line entries must start with either '*' or '-' to identify a new entry or entry change. The order
the entries must be newest revisions at the top and oldest revisions at the bottom. The following

Select Calibration Inc. October 2, 2025 Page 12 of 19

RPMSpecsEditor Users Guide

shows an example of a change log with the newest entry on top:

* Wed Sep 3 2025 <author name>
- Fixed various bugs
- Added feature to do something better.
- Cleaned up something.
* Sun Nov 6 2016 <author name>
- Initial RPM release

Illustration 4: Change Log section.

Options
The Options section contains entries that will impact the generated SPEC file.

Select Calibration Inc. October 2, 2025 Page 13 of 19

RPMSpecsEditor Users Guide

Table 7: Options:

Name Description

Make File Generator Selection for the type of make-file generator used in the spec file.

Requires Package Method for dealing with required packages used by the libraries and
plugins.

Shared Lib Path Location where the shared libraries and plugins are located.

RPM Creation Example
This example describes the entire process to create an RPM file from a Qt application using Qmake
to create the make file. At a minimum it is assumed that a version of Qt is installed and utilities
such as GCC, make, patchelf, and RPMBuild are also installed.

Select Calibration Inc. October 2, 2025 Page 14 of 19

Illustration 5: Options section.

RPMSpecsEditor Users Guide

RPMBuild Directory Setup

A suitable directory structure must be created in order to use the RPMBuild utility. In this
example the build folder is called rpmbuild and is below the users home folder.

├── BUILD
│ └── SOURCES
├── RPMS
│ └── x86_64
├── SOURCES
├── SPECS
├── SRPMS
├── desktop_menu
├── shared_libs
│ └── bearer
│ └── egldeviceintegrations
│ └── generic
│ └── imageformats
│ └── lib
│ └── platforminputcontexts
│ └── platforms
│ └── platformthemes

The folders desktop_menu and shared_libs contain the menu data and copies of libraries and
plugins that can be used to create the RPM file.

Source Files

The source file is a tar archive of the application and associated files. For Qt this will include the
PRO file or CmakeLists.txt file, source files, resource files, and anything else related to the
application. The naming of the archive (internal and external) is important. For example, an
application with the name MyApp version 1.0 should be in a directory called MyApp-1.0 and then
compressed with the tar command and saved in the SOURCES folder with the same naming
convention.

tar -czf MyApp-1.0.tar.gz MyApp-1.0

SPEC File

The SPEC file is created by the PRMSpecsEditor utility and saved in the SPECS folder. The variable
names for program and version must be updated to match the name and version of the
application.

Desktop Menu Items

The desktop menu entries describe the application in some detail and will be added to the
operating system launcher when installed. There are two files where the first is a text file with the
extension of .desktop and the second is a PNG image file for the application icon. Both will have
the name of the application (i.e. MyApp.desktop and MyApp.png).

Typical Desktop Entry:

[Desktop Entry]
Categories=Utility;
Encoding=UTF-8

Select Calibration Inc. October 2, 2025 Page 15 of 19

RPMSpecsEditor Users Guide

Name=Description Of MyApp
GenericName=My Application
Comment=My Application
Exec=MyApp
Icon=MyApp.png
Terminal=false
StartupNotify=true
Type=Application

Shared Files

Depending on the nature of the utility it may be necessary to create a link to other locations or
files in order to compile the target application. For example, the directory ~/MyProjects/core is
needed in order to compile many of the applications used by SCI. Copying the necessary files and
folders to the build folder used by RPMBuild is one option but a better option is to create links to
anything external that might be needed.

ln -s ~/MyProjects/core ~/rpmbuild/BUILD/core

In the above example a link is created to a required directory containing files necessary for
compilation of the application.

Build RPM

The build process is done from the root of the RPMBuild directory. If using the terminal the
command would be something like this:

rpmbuild -v -bb --clean SPECS/MyApp.spec

where:

-v = verbose output
-bb = build only binary packages
--clean = remove build tree after packages are made
SPECS/xxx = name of specs file

If source file RPM’S are needed then use the appropriate command line option. In this example
only an executable is required.

If creation is successful there will be an RPM file created in the RPMS folder with the name
MyApp-1.0-1.x86_64.rpm (assuming the target is x86_64).

RPM Signing

The RPM files can be signed to show that the application was created by a credible source and that
modifications have not been made following the creation of the RPM. The command to do this is:

rpm --resign MyApp-1.0-1.x86_64.rpm

This will only work if a suitable signing certificate exists. If the goal is for large scale distribution
than a certificate should be acquired allowing this software to be installed anywhere. If the RPM is
unsigned or signed with a locally generated certificate then the user installing the RPM will have
the option to abort installation due to not being signed or signed with an unknown certificate.

Select Calibration Inc. October 2, 2025 Page 16 of 19

RPMSpecsEditor Users Guide

Troubleshooting
Following the installation of an application on a target system the application may not launch
properly if dependencies are missing and this happens particularly with the plugins.

Dependency problems should only be an issue when installing on debian based systems as the
debian package is created from the rpm file using the Alien utility and appears to ignore the
'Requires' entries from the RPM package. The solution is to create a similar utility for debian
systems that creates a debian package directly (a future project idea).

Example Application Launch Problem

The ballbarviewer application was installed on a debian based GNU/Linux system and did not
launch properly from the application menu following the installation. When opened from a
terminal window the following was returned:

ron@ron-VirtualBox:$ ballbarviewer ← launch application from terminal window.

qt.qpa.plugin: Could not load the Qt platform plugin "xcb" in "" even though it
was found.
This application failed to start because no Qt platform plugin could be
initialized. Reinstalling the application may fix this problem.

Available platform plugins are: eglfs, linuxfb, minimal, minimalegl, offscreen,
vnc, xcb.

Aborted (core dumped)

To see detailed information related to plugins it may be necessary to set the environment
variable to show debug information for Qt plugins. This is done from the terminal window prior to
trying to launch the application.

export QT_DEBUG_PLUGINS=1

Finding Missing Libraries

The ballbarviewer application is typically installed in the folder /usr/lib64/ballbarviewer and all
libraries and plugins will be below this directory.

ron@ron-VirtualBox:$ ls /usr/lib64/ballbarviewer/platforms
libqeglfs.so libqlinuxfb.so libqminimalegl.so libqminimal.so libqoffscreen.so
libqvnc.so libqxcb.so

The missing libraries needed by libqxcb.so can be found using the GNU/Linux LDD command. The
output was piped through grep looking only for lines containing the text 'not found'.

ron@ron-VirtualBox:$ ldd /usr/lib64/ballbarviewer/platforms/libqxcb.so | grep
"not found"

libxcb-xinerama.so.0 => not found
libxcb-xinerama.so.0 => not found

Select Calibration Inc. October 2, 2025 Page 17 of 19

RPMSpecsEditor Users Guide

Installing Missing Libraries

Once the missing libraries have been identified they can be installed. The name of the library is
usually not the name of the package containing it but this can be determined by a variety of
methods. In this example the package name is 'libxcb-xinerama0'.

ron@ron-VirtualBox:$ sudo apt-get install libxcb-xinerama0
[sudo] password for ron:
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following NEW packages will be installed:
 libxcb-xinerama0
0 upgraded, 1 newly installed, 0 to remove and 0 not upgraded.
Need to get 0 B/5,260 B of archives.
After this operation, 37.9 kB of additional disk space will be used.
Selecting previously unselected package libxcb-xinerama0:amd64.
(Reading database ... 184296 files and directories currently installed.)
Preparing to unpack .../libxcb-xinerama0_1.14-2_amd64.deb ...
Unpacking libxcb-xinerama0:amd64 (1.14-2) ...
Setting up libxcb-xinerama0:amd64 (1.14-2) ...
Processing triggers for libc-bin (2.31-0ubuntu9.18) ...

ron@ron-VirtualBox:$ ballbarviewer ← worked this time

Select Calibration Inc. October 2, 2025 Page 18 of 19

RPMSpecsEditor Users Guide

Revision History

Date Version Changes

Oct 2, 2025 1.0 New Program

Select Calibration Inc. October 2, 2025 Page 19 of 19

	Introduction
	Overview
	SPEC File
	Variables
	Requires Variable Entry
	Variable Editor
	Description

	Expressions
	Libraries
	Target Library Directories
	Source Libraries
	Source Library Versions

	Requires
	Change Log
	Options
	RPM Creation Example
	RPMBuild Directory Setup
	Source Files
	SPEC File
	Desktop Menu Items
	Shared Files
	Build RPM
	RPM Signing

	Troubleshooting
	Example Application Launch Problem
	Finding Missing Libraries
	Installing Missing Libraries

	Revision History

